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LETTER TO THE EDITOR 
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Abstract. The freezing behaviour of a binary hard-sphere mixture with diameter ratio 0.1 is 
studied within the formalism of the density functional theory (DFT). The stability of a ‘sublattice- 
melt‘ (SLM) phase. wherein the large spheres are localized on crystal lattice sites and the small 
ones are fluid-like, is examined. The non-uniform one-particle densities of the small and I;uye 
spheres in the SLM phase have been calculated. The fluid-solid phase diagram has been drawn. 

The purpose of the present work is to study the freezing behaviour of very asymmetric 
binary hard-sphere mixtures. By ‘very asymmetric’ we mean that one species of hard 
spheres has a diameter much larger than the other species. Despite active investigations of 
binary hard-sphere mixtures in recent years 11-31, the phase diagrams of very asymmetric 
mixtures are not yet well understood. Those mixtures are nonetheless interesting since they 
can in a first approximation modelize dense colloidal systems. Furthermore, it has recently 
been predicted [4] that when such mixtures are very rich in small spheres, they will phase 
separate into two coexisting pure fluids. We propose here to study the crystallization of an 
asymmetric mixture over the whole range of concentration of the small spheres in order first 
to draw the phase diagram and second to locate the freezing transition with respect to the 
fluid phase separation. Another interesting aspect is the solid phase itself which is formed 
by such a mixture. Because of the large size difference among the two species one expects it 
to be a ‘sublattice-melt’ (SLM) phase in which the large spheres are localized on lattice sites 
and the small ones can move freely through the space left by the larger ones. This phase 
is reminiscent of the superionic conductors. It has also been found in asymmetric binary 
hard-sphere mixtures by a simulation study [5] and some previous DFT work [6,7]. But in 
[5] and 161 the question of its possible metastability with respect to the pure crystal formed 
by the large-sphere (denoted here Sz) phase was not examined, whereas in [7], for a fluid of 
concentration 0.5, the coexisting SLM phase has been found to be metastable compared with 
the SZ phase. However, in IS] and 171 the one-particle density of the smaller species in SLM 
was assumed to be uniform in the whole space. This was somewhat unphysical because the 
localization of the large spheres excludes some regions to the smaller ones. In the present 
work we shall remove such an assumption and thus expect to give a better description of 
the SLM phase. First we shall examine the stability of the SLM phase by calculating its free 
energy. Then we study the fluid-solid coexistence as a function of the reduced pressure 
P/ T, by considering both of the solid phases i.e. the SLM and Sz. 

The theoretical framework here is the modified weighted density approximation (MWDA) 
proposed by-Denton and Ashcroft [7], which is easy to implement and has been shown 
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to give good results for the freezing of one-component hard spheres [8] and for binary 
mixtures with various diameter ratios [7]. We therefore refer readers to [7] for technical 
details. We consider a binary mixture formed of NI small spheres and NZ large spheres in 
a volume V. The diameter ratio is Cr = u1/02(< 1). The concentration of large spheres 
x = N2/(Nl + Nz) .  At given T, the free energy F is a functional of the spatial densities 
p l ( r )  and pz(r).  Whereas the ideal-gas part of the free energy functional can be exactly 
expressed in terms of the densities, the excess part has to be approximated. In MWDA, for a 
binary mixture, Fe, per particle is assumed to be given by that of two homogeneous systems 
having the same concentration but different uniform densities [7]: 

(1) 
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FgWDA = Nifo&, X )  + Nzfo(b(z), X )  

where fo is the excess free energy per particle of the uniform phase, and the uniform 
densities and &) are related to the actual non-uniform densities through some weighting 
functions: 

The normalized weighting functions wij (ij = 11,22 and 12) are determined by the 
following self-consistency criterion: 

where on the right hand side cj;) are the direct correlation functions of the uniform fluid 
(supposed to be known). Here they shall be the analytic ones given by the Percus- 
Yevich theory [9], which are expected to predict correctly the liquid structure for moderate 
concentrations of small spheres ( x  > 0.2) [IO]. 

q/q = 0.1. The main solid phase we  are interested in is the ‘sublattice- 
melt’ (SLM) smcture, in which the large spheres form a faced-centred cubic (FCC) lattice and 
the small ones remain fluid-like in the lattice. We assume a Gaussian-sum representation 
of the density of large particles: 

We fix a 

where (ri] are the FCC lattice sites. Since the smaller ones are fluid-like, we could in a first 
approximation assume PI (7) to be uniform, as in previous DFT studies of the SLM phase 
[6,7]. But a more realistic assumption is to allow it to be modulated by p z ( r ) .  We thus 
expand PI ( T )  in the reciprocal lattice of the FCC lattice: 

where (G) are the reciprocal lattice sites and (UG} are the Fourier coefficients. From the 
fundamental theorem of the D F ~  [Ill, the parameters y and {UG) should minimize F[pl, pzl 
at given T, x and p = N / V .  If we assume l u ~ l  << 1, we can make a Taylor expansion of 
F[pl, p2] around ( u c  = 0). The minimization of F [ p l ,  m] with respect to {UG} gives, to 
the first order of (UG] and within the MWDA, the following relation between (UG] to y :  

(6) 
1 
2 

uG=’-ex P ( -- 4“:) PZ ( c 1 2 ( G : ~ , x ) + ~ 1 2 ( G b , x ) A ( y , b , x ) )  



Asymmetric binary hard-sphere mixtures L15 

where 

The function clz(G) in (7) is the Fourier transform of c12(r) and b ( y )  is the weighted 
uniform density for an SLM phase with the 'zeroth order approximation', i.e. p l ( r )  = pi 
and &(T) given by (4). 

Another solid phase we studied was an FCC lattice formed solely by the large spheres 
(the S2 phase). In this phase, we have p p ) ( ~ )  = 0 and p i s z ) ( ~ )  = E ,  exp(-y(r - rJZ).  
Such a one-component solid can coexist with a fluid mixture since we are studying phase 
coexistence at fixed pressure and temperature. The fluid-solid coexistence is determined 
by the conditions Ps = PI, pj = pi (for fluid-SLM coexistence only) and p; = p!. Here 
the symbol (s) refers to the solid phase and (I) to the fluid one. The pressure of the solid 
phase is related to its free energy through the thermodynamic relation P = -glT,x,N and 
the chemical potentials pi = $ l T , v , N , + , .  For the coexisting fluid, we used the equation 
of state proposed~ by Mansoori et al [12], which gives better agreement with the simulation 
results than that obtained from the Percus-Yevick compressibility equation [12]. 

Iiigure 1. The density profiles m(r) (solid line) 
and P, (T )  (dashed line) at the SLM phase, for 
q = 0.56. x = 0.90. The densities are drawn 

0-0.5 0 0.5 i o  in the (1,0,0) direction and the abscissa y is 
J measured in units of the cubic lanice constant a. 

We first examined the effect of concentration on the stability of the SLM phase. We find 
that for a given packing fraction of the large spheres (the packing fraction for the species 
~i (i = 1,2) is q; = pita:), when we decrease x (i.e. putting in more small spheres), 
the free energy of the SLM phase is increased.. This can be explained by the fact that the 
disordered small spheres in the SLM phase increase the excess free energy by increasing 
the excluded volume to the large spheres. Another observation is on the structure of p~ (T) 
resulted from (6). Figure 1 shows the density profiles of large and small spheres in the 
SLM phase. One notices that m(r) is strongly peaked around the lattice sites whereas P I ( T )  
is much flatter, reflecting its fluid-like nature. In detail, pi (T) displays some prominence 
around the interstices of the FCC sites,  which are the expected favourable places for the 
small spheres in  the SLM phase, and it shows some hollowness  in^ the proximity of the FCC 
lattice sites because of the exclusion by the large~spheres. Still, pl(r) is not close enough to 
zero in that area. We think this is due to the fact that (6) is only a first-order approximation 
of {!'GI. 
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F i r e  2. The Ruid-Sm ccexistenct concenuations 
versus the reduced pressure P' = PPu;, For each 
P', XI  is on the lefl curve and x, on the right one. 
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Figure 3. Coexistence packing fractions (q  = 
0 2  pl fu:  + VMUS the concentration of large 

spheres in the coexisting fluid. For each XI where 
there is fluid-solid coexistence. '11 is on the lower 
curve. qs on the upper one. The solid lines 
correspond to the fluid-SLM coexistence; &e dashed , ones to the fluid+ coexistence. Data for the fluid 
phase separation (filled squares) are from [IO]. 
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Secondly, we have studied the phase behaviour of the system as a function of the 
reduced pressure P* = g P c 2 .  At given P*, there is a pair of coexisting concentrations 
(XI, x,) to which also corresponds a pair of total packing fractions ( V I ,  )I$). Figure 2 shows 
(XI, x s )  as a function of P*. One notices that when P' is increased from its one-component 
fluid-solid coexistence value, XI decreases rapidly whereas x, is much less sensitive to P*. 
Furthermore, for all P* in the figure (10.4 < P" Q 36). x, remains close to 1 (typically, 
x, 2 0.95), meaning that in the SLM phase coexisting with a fluid at a given P', the amount 
of small spheres is quite limited. In figure 3 we show the fluid-solid coexisting packing 
fractions (111, qs) as a function of the fluid concentration XI. Both )I, and vs increase when 
XI decreases. The phase behaviour is also represented in the figure: fluids with high and 
moderate concentrations of large spheres, i.e. 0.256 < XI .= 1, corresponding to the pressure 
range 10.4 c P" Q 36, coexist with the SLM phase: fluids with rather low concentrations 
(0.17 Q XI c 0.256), corresponding to the pressure range 36 c Pa < 72 coexist with 
the Sz solid phase; for very low concentrations, i.e. y < 0.17 (P* t 72). no fluid-solid 
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coexistence has been found. We should also point out that for X I  = 0.17, qs = 0.701, which 
is quite close to its close packing value (qclosepac~ing = 0.74). We think that this is the limit 
of applicability of MWDA. 

In conclusion, using MWDA, we have studied the fluid-SLM transition of an asymmetric 
hard-sphere mixtures. We have characterized the non-uniform densities P I  (r) and &(r) in 
such a phase. We have also carried out the fluidsolid phase diagram calculation. It has 
been found that above a certain value of the concentration of small spheres in the fluid phase 
(xl < 0.17), no more fluid-solid coexistence could be found. This last point is consistent 
with the fluid-phase separation phenomenon found by Biben etal [4] in mixtures which are 
very rich in small spheres ( X I  < 0.14). But we have to bear in mind that the Percus-Yevich 
direct correlation functions we  used in the present work are not suitable for describing very 
asymmetric mixtures with x << 0.5 [41. So our results cannot exclude there being, in that 
region of concentrations, phase equilibrium between a solid phase and a fluid phase of very 
low density, as found by a free volume theory [13]. Therefore it would be interesting to 
use, in further DFT work, direct correlation functions obtained by a more self-consistent 
theory (e.g. [4]). 
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